## 15 Points

Division of Health Engineering Computing & Science
School of Computing and Mathematical Sciences
Department of Mathematics and Statistics

### Staff

Edit Staff Content

#### Librarian(s)

You can contact staff by:

• Calling +64 7 838 4466 select option 1, then enter the extension.
• Extensions starting with 4, 5, 9 or 3 can also be direct dialled:
• For extensions starting with 4: dial +64 7 838 extension.
• For extensions starting with 5: dial +64 7 858 extension.
• For extensions starting with 9: dial +64 7 837 extension.
• For extensions starting with 3: dial +64 7 2620 + the last 3 digits of the extension e.g. 3123 = +64 7 262 0123.
Edit Staff Content

### Paper Description

Edit Paper Description Content

The first two-thirds of ENGEN201 teaches multi-variable calculus and vector calculus, extending the one-variable calculus from ENGEN102.

The last third teaches ordinary differential equations and Laplace transform.

Edit Paper Description Content

### Paper Structure

Edit Paper Structure Content

This is a fully online, lecture/tutorial-based paper. It uses pre-recorded lectures and tutorials from the 20B trimester. There are also weekly online quizzes on Moodle, which should be done before submitting the corresponding assignment. The lecturer will hold weekly office hour on Zoom.

Edit Paper Structure Content

### Learning Outcomes

Edit Learning Outcomes Content

Students who successfully complete the course should be able to:

• First two-thirds:

1. Compute the tangent line, arc length and work integrals over a parametrized curve.

2. Calculate the gradient vector of a multivariable function, and apply the chain rule.

3. Calculate the Taylor expansion of a multivariable function.

4. Solve unconstrained and equality constrained optimization problems in up to three variables.

5. Compute multivariable integrals (in Cartesian and polar coordinates).

6. Use integration to compute volumes and moments of solid bodies.

• Last third:

7. Solve ordinary differential equations.

8. Use Laplace transform to solve ordinary differential equations.

Edit Learning Outcomes Content
Edit Learning Outcomes Content

### Assessment

Edit Assessments Content

The assessment mark will consist of :

TWO take-home Tests each worth 30% for a total of 60%

• Test dates: Test 1 on Tuesday 5 January 2021. Test 2 on Monday 15 February 2021.

• There will be 11 online quizzes and the best 10 marks will be counted.

A tutorial component of 30%

• There will be 11 tutorial based assignments of which only the best 10 marks will be counted. Assignments should be your own work and copying may lead to referral to the university disciplinary committee.

#### Assessment Components

Edit Assessments Content

The internal assessment/exam ratio (as stated in the University Calendar) is 100:0. There is no final exam. The final exam makes up 0% of the overall mark.

The internal assessment/exam ratio (as stated in the University Calendar) is 100:0 or 0:0, whichever is more favourable for the student. The final exam makes up either 0% or 0% of the overall mark.

Component DescriptionDue Date TimePercentage of overall markSubmission MethodCompulsory
1. Assignments (best 10 of 11)
30
• Online: Submit through Moodle
2. Moodle multiple-choice quizzes (best 10 of 11)
10
• Online: Submit through Moodle
3. Take-home Test 1
5 Jan 2021
No set time
30
• Online: Submit through Moodle
4. Take-home Test 2
15 Feb 2021
No set time
30
• Online: Submit through Moodle
 Assessment Total: 100
Failing to complete a compulsory assessment component of a paper will result in an IC grade
Edit Assessments Content

Engineering Mathematics, K. A. Stroud (with Dexter Booth), 7th Edition. You should already own this textbook, which was used in first year.

Advanced Engineering Mathematics, K. A. Stroud (with Dexter Booth), 5th Edition. This textbook will also be used for ENGEN301.

#### Other Resources

Edit Other Resources Content

LECTURE NOTES

A PDF of these notes will be posted on Moodle - not available from Campus Printery.

Edit Other Resources Content

### Online Support

Edit Online Support Content

NOTICES, MOODLE AND RETURN OF ASSESSED WORK

Edit Online Support Content

10-12 hours per week.

Over the semester:

Online lectures: 36 hours

Tutorials: 11 hours

Quizzes: 11 hours

Assignments: 22 hours

Tests preparation: 34 hours

Total hours: 150 hours

This paper is a prerequisite for ENGEN301.

#### Prerequisite(s)

Prerequisite papers: ENGEN102 or ENGEN184 or ENGG184 or MATH101

#### Restriction(s)

Restricted papers: ENGG284 or ENGG285 or MATH251 or MATH255 or MATHS201 or MATHS203